Блок схемы по информатике примеры. Блок-схема алгоритма: программы, задачи, элементы, построение. Автоматическое выравнивание и интервалы

Основные блоки, используемые для составления схем алгоритмов, представлены в нормативных документах ЕСПД, главным образом это

  • ГОСТ 19.003-80 Схемы алгоритмов и программ. Обозначения условные графические
  • ГОСТ 19.701-90 Схемы алгоритмов, программ, данных и систем. Условные Обозначения и правила выполнения



Основные блоки для составления алгоритмов

Название Обозначение Описание
Начало, конец, прерывание процесса обработки данных или выполнения программы
Выполнение операции или группы операций, в результате которых изменяется значение, форма представления или расположение данных
Использование ранее созданных и отдельно описанных алгоритмов или программ
Преобразование данных в форму, пригодную для обработки (ввод) или отображения результатов обработки (вывод)
Решение Выбор направления выполнения алгоритма или программы в зависимости от некоторых переменных условий
Блок решения имеет 1 вход и по крайней мере 2 выхода
Границы цикла Символ, состоящий из двух частей, отображает начало и конец цикла. Обе части символа имеют один идентификатор.
Условия для инициализации, приращения, завершения и т. д. помещаются внутри символа в начале или в конце в зависимости от расположения операции, проверяющей условие.
Подготовка Выполнение операций, меняющих команды или группу команд, с целью воздействия на некоторую последующую функцию (установка переключателя, модификация регистра, инициализация программы)
Пояснение к элементу схемы (или линии связи)
При большой насыщенности схемы отдельные линии потока между удаленными символами допускается обрывать. При этом в конце (начале) обрыва должен быть помещен символ «Соединитель». Внутри блока соединителя указывается имя уникального идентификатора.

Размер a должен выбираться из ряда 10, 15, 20 мм. Допускается увеличивать размер a на число, кратное 5 мм. Размер b равен 1,5a.

Основным направлением потока в схемах алгоритмов принято направление сверху-вниз, слева-направо. Если линии потока идут в основном направлении и не имеют изломов, стрелками их можно не обозначать. В остальных случаях направление линии потока обозначать стрелкой обязательно.

Записи внутри символа должны быть представлены так, чтобы их можно было читать слева направо и сверху вниз, независимо от направления потока.

В схеме символу может быть присвоен идентификатор, который должен помещаться слева над символом.

Допускается краткая информация о символе (описание, уточнение или другие перекрестные ссылки для более полного понимания функции данной части схемы). Описание символа должно помещаться справа над символом.

В случае необходимости слияния линий потока место слияния должно быть обозначено точкой или символом 0.


Блок-схема представляет собой графическое отображение какого-либо процесса, четко показывающего систематическую последовательность всех этапов выполнения поставленной задачи, а также все группы, которые вовлечены в данный процесс. Такая схема является системой графических символов (блоков) и линий переходов (стрелок) между ними. Каждый из таких блоков соответствует определенному шагу алгоритма. Внутри такого символа дается описание данного действия.

Для чего применяют блок-схемы?

Упомянутые системы призваны выполнять следующие функции:

Разрабатывать новый процесс;

Описывать и документировать текущий алгоритм;

Разрабатывать модификации к данному процессу либо исследовать звенья с вероятным возникновением ошибок и сбоев;

Определять, когда, где и как можно менять текущий алгоритм, с целью проверки устойчивости всей системы.

Разработка последовательности операций

Любая блок-схема строится на основе алгоритма действий, описывающего работу устройства или программы. Поэтому сначала строится сама система. "Алгоритмом" называют описание последовательности операций для решения поставленной задачи. По сути, это правила выполнения необходимых процессов Прежде чем приступить к построению алгоритма, требуется четко определить задачу: что необходимо получить в результате, какая исходная информация нужна, а какая уже имеется, есть ли ограничения для ее получения. После этого составляется список действий, которые необходимо осуществить для получения требуемого результата.

Типы алгоритмов

На практике чаще всего применяют следующие виды блок-схем:

Графическая, то есть в основе находятся геометрические символы;

Словесная: составляется с помощью обычных слов того или иного языка;

Псевдокоды: представляют собой полуформализованное описание на которое включает в себя элементы языка программирования и фразы литературного, а также общепринятые математические символы;

Программная: для записи используются исключительно языки программирования.

Блок-схема устройства: описание

Графическое представление последовательности действий включает в себя изображение алгоритма, описывающего связи функциональных блоков данной схемы, которые соответствуют выполнению одного либо нескольких действий. Блок-схема массива состоит из отдельных элементов, размеры и правила построения которых определены государственным стандартом. Для каждого типа действия (ввода данных, вычисления значений выражений, проверки условий, управления повторением действий, окончания обработки и др.) предусмотрена отдельная представленная в виде блока. Эти символы соединяются линиями, определяющими очередность действий.

Основные элементы, употребляемые при составлении блок-схем

Полный список графических символов, используемых для описания алгоритма, состоит из 42 элементов. Его весь мы приводить не будем, а рассмотрим только основное.

Элементы блок-схемы:

1. Процесс означает вычислительное действие либо последовательность таких действий, изменяющих значения, размещения данных или форму представления. Для наглядности схемы такие элементы можно объединить в один блок. Данный символ имеет вид прямоугольника, внутри которого записываются комментарии, сопровождающие выполнение операции (либо группы операций).

2. Решение. Данный блок применяется для обозначения перехода управления по определенному условию. В каждом таком элементе указывается вопрос, сравнение или условие, которые его определяет. Другими словами, решение - это выбор направления для выполнения программы или алгоритма в зависимости от некоего переменного условия. Графический вид данного элемента - это ромб. Упомянутый символ может использоваться в качестве изображения следующих унифицированных структур: выбор, развилка полная и неполная, цикл «до» и «пока».

3. Модификация. Этот блок означает начало цикла. Он применяется для организации циклической конструкции. Внутри такого элемента записывают параметр круга действий, указывают его начальные значения, граничное условие, а также шаг изменения параметра для последующего повторения. Другими словами, модификация - это выполнение меняющихся команд или их групп, операций, изменяющих программу. Графическое изображение этого символа представляет собой шестиугольник.

4. Предопределенный процесс означает вычисление по заданной или стандартной программе. Его используют для указания обращения к вспомогательному алгоритму, который существует автономно в виде отдельных самостоятельных модулей, а также для обращения к библиотечным подпрограммам. Графически вид этого символа представлен прямоугольником с двумя вертикальными полями по краям. Этот элемент служит для указаний обращений к функциям, процедурам, программным модулям.

5. Ввод-вывод данных в общем виде.

6. Пуск и остановка. Этот элемент означает начало и конец алгоритма, а также вход в программу и выход из неё. Графически данный символ напоминает прямоугольник, у которого вместо боковых прямых - дуги.

7. Документ означает вывод результатов работы на печать. Графически такой элемент напоминает прямоугольник, только вместо нижней прямой начертана полуволна.

8. Ручной ввод означает пуск данных в процесс обработки оператором с помощью устройства, которое сопряжено с компьютером (клавиатура). Графический символ ручного ввода представляет собой четырехугольник, у которого боковые линии параллельны, нижняя перпендикулярна им, а верхняя косая.

9. Дисплей означает ввод или вывод информации в случае, когда устройство непосредственно подключено к процессору. В тот момент, когда начинают воспроизводиться данные, оператор может вносить изменения во время их обработки. Графически данный элемент представляет фигуру, у которой нижняя и верхняя линии параллельны, правая - это дуга, а левая состоит из двух прямых в виде стрелки.

10. Линии потока - это стрелки, которые указывают последовательность связей. Ни одна блок-схема структуры не может обходиться без данного элемента. Существуют определенные правила начертания этих символов. Перечислим их:

Данные элементы должны быть параллельными линиям внешнего периметра или границам страницы, на которой изображена эта блок-схема;

Направление линии сверху вниз или слева направо считается основным, стрелками оно не обозначается, остальные случаи указания направлений обозначены ими;

Изменение направления данного элемента производится только под углом 90 о.

11. Соединитель. Данный элемент предназначен для указания связи на прерванных линиях потока. Эти символы используются в том случае, если блок-схема программы строится из нескольких частей. Тогда линия потока от одной части должна закончиться «соединителем», а новой части - начаться с данного символа. Внутри такого элемента ставится один и тот же порядковый номер. Графическое изображение «соединителя» - это круг.

12. Межстраничный соединитель. Назначение этого элемента аналогично предыдущему, только используется он для соединения блок-схем, размещенных на разных страницах. Изображение такого элемента представлено пятиугольником в виде домика.

13. Комментарий - это связь между различными элементами блок-схемы с пояснениями. Упомянутый элемент позволяет включать в себя формулы и прочую информацию.

Построение блок-схем

Графическое построение алгоритма - это часть документации к устройству или программе, которая всегда имеется в избытке. Однако в большинстве случаев программное обеспечение вообще не нуждается в блок-схеме. Лишь единицам требуется построение алгоритма, занимающего несколько листов, остальным же достаточно символичной схемы. Простая блок-схема показывает структуру ветвления программ только в одном аспекте. Однако даже такая структура четко видна только при условии, что алгоритм помещается на одном листе. В обратном случае, когда блок-схема расположена на нескольких страницах, связанных межстраничными переходами, весьма сложно получить о ней верное представление. Если она размещается на одном листе, то для большой программы данное изображение алгоритма превращается в ее общий план с перечнем главных блоков и этапов. Конечно же, такой график не следует стандартам построения схем, но он и не нуждается в них, так как этот процесс полностью индивидуален. Правила, касающиеся типа символов, стрелок и порядка нумерации, необходимы только для разбора подробных блок-схем.

Массивы и построение алгоритмов

Массив представляет собой совокупность однотипной информации, которая хранится в последовательных кластерах памяти и имеет общее имя. Такие ячейки называются "элементами системы". Все кластеры нумеруются по порядку. Такой номер называется "индексом элемента массива". Как составить блок-схему для подобной системы? Рассмотрим пример создания алгоритма для элементарного типа. Простейшая система имеет условно вид строки. Зададим имя для данного массива - «А». Будем считать, что наша система состоит из восьми ячеек (от 1 до 8). Каждый из упомянутых кластеров содержит случайное число, которое называется "элементом массива". Для обращения в конкретной ячейке необходимо указывать имя в (). Рассмотрим пример, в котором блок-схема массива предназначена для заполнения системы случайными числами с последующим выводом информации на экран. Что представляет собой такой алгоритм? Это элементарная система. По сути, она не имеет практического применения, однако удобна для учебного процесса. Рассматриваемая блок-схема (пример построения описан ниже) содержит всего семь основных элементов, соединенных линиями переходов.

Описание последовательности выполнения задачи

1. Первым элементом схемы будет символ «Начало».

2. Вторым блоком - «Процесс», внутри которого вписываем «инициализация random».

3. Следующий элемент - «Модификация», в блоке вписываем значение ячеек массива.

4. Далее, согласно заданной функции, происходит переадресация на следующий блок «процесса», в котором задается обращение к конкретным кластерам системы с указанием ограничения случайных чисел в диапазоне от нуля до ста. После проведения данной операции происходит возврат к третьему блоку, а через него - далее на пятый.

5. В этом блоке «Модификации», согласно вписанной функции, происходит переадресация на следующий элемент.

6. «Вывод» производит отображение информации о новом содержимом массива на мониторе с последующим направлением на предыдущий блок. Далее - на последний элемент.

7. «Конец» работы алгоритма.

На базе такой блок-схемы составляется программа, которая обеспечит работу представленного алгоритма.

«Редактор блок-схем»

Если вы задаетесь вопросом о том, как составить блок-схему, то знайте, что существуют специальные программы, которые предназначены для создания, а также редактирования таких систем. Удобством графического отображения алгоритма является то, что пользователь не привязан к синтаксису конкретного языка программирования. Построенная блок-схема одинаково подходит для всех языков (например, С, Паскаль, Бейсик и другие). Кроме того, редактор может использоваться для построения диаграмм и проверки работоспособности схем. Такая программа является специализированным софтом. Она предоставляет разнообразный набор инструментов, необходимых для построения блок-схем, что делает ее более удобной, по сравнению с обычными Дополнительные опции позволяют оптимизировать процесс составления системы с дальнейшим ее преобразованием в функции и процедуры языка программирования. Кроме того, редактор блок-схем предлагает набор шаблонов, способных существенно ускорить работу начинающего пользователя. Ведь известно, что при построении алгоритма часто применяются повторяющиеся структуры, например разнообразные варианты циклов, альтернативы (полные и неполные), множественные ветвления и прочее. Редактор позволяет выделять часто используемые в блок-схемах элементы и добавлять их в создаваемую схему. Это избавляет от прорисовки их каждый раз заново. Кроме того, с помощью редактора можно импортировать функции и процедуры, реализованные на любом известном языке программирования. Данная опция полезна для разбора структуры алгоритма, который написан на малознакомом языке. Системные требования рассматриваемой программы довольно скромные, что позволяет использовать ее на любом

Заключение

Подводя итог, следу отметить, что подробные схемы построения алгоритмов уже устарели. В качестве описания процесса они никому не интересны. В лучшем случае блок-схемы пригодны для проведения обучения новичков, которые не умеют алгоритмически мыслить. Предложенные в свое время элементы со своим содержанием являлись языком высокого уровня, они объединяли операторов языка машины в отдельные группы. На данный момент каждый графический элемент соответствует конкретному оператору. Значит, сам символ превратился в случайное, а главное - бесполезное занятие по рисованию, от которого легко можно отказаться. Сегодня стали лишними даже линии переходов, так как каждый оператор уже определен. В действительности графическое построение алгоритмов больше превозносится, чем применяется на практике. Программист с большим опытом работы, прежде чем написать программу, редко чертит блок-схему. Когда стандарт организации требует графический алгоритм, то рисуют его уже после окончания работ.

2.1 Разработка алгоритма.

Алгоритм - это

a. описание последовательности действий для решения задачи или достижения поставленной цели;

b. правила выполнения основных операций обработки данных;

c. описание вычислений по математическим формулам.

Перед началом разработки алгоритма необходимо четко уяснить задачу: что требуется получить в качестве результата, какие исходные данные необходимы и какие имеются в наличии, какие существуют ограничения на эти данные. Далее требуется записать, какие действия необходимо предпринять для получения из исходных данных требуемого результата.

На практике наиболее распространены следующие формы представления алгоритмов:

Словесная (записи на естественном языке);

Графическая (изображения из графических символов);

Псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);

Программная (тексты на языках программирования).

Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.

Пример. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел.

Алгоритм может быть следующим:

1. задать два числа;

2. если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма;

3. определить большее из чисел;

4. заменить большее из чисел разностью большего и меньшего из чисел;

5. повторить алгоритм с шага 2.

Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи. Убедитесь в этом самостоятельно, определив с помощью этого алгоритма наибольший общий делитель чисел 125 и 75.

Словесный способ не имеет широкого распространения по следующим причинам:

Такие описания строго не формализуемы;

Страдают многословностью записей;

Допускают неоднозначность толкования отдельных предписаний.

Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным.

При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

Такое графическое представление называется схемой алгоритма или блок-схемой.

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

Он занимает промежуточное место между естественным и формальным языками.

С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя. Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

2.2 Блок-схема.

Блок-схемой называют графическое представление алгоритма, в котором он изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий.

Приведем наиболее часто употребляемые символы.

Название символа Обозначение и пример заполнения Пояснение
Процесс Вычислительное действие или последовательность действий
Решение Проверка условий
Модификация Начало цикла
Предопределенный процесс Вычисления по подпрограмме, стандартной подпрограмме
Ввод-вывод Ввод-вывод в общем виде
Пуск-останов Начало, конец алгоритма, вход и выход в подпрограмму
Документ Вывод результатов на печать

Блок "процесс" применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.

Блок "решение" используется для обозначения переходов управления по условию. В каждом блоке "решение" должны быть указаны вопрос, условие или сравнение, которые он определяет.

Блок "модификация" используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.

Блок "предопределенный процесс" используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.

Пример. Составить блок-схему алгоритма определения высот ha, hb, hc треугольника со сторонами a, b, c, если



где p = (a + b + c) / 2.
Решение. Введем обозначение тогда h a = t/a, h b = t/b, h c = t/c. Блок-схема должна содержать начало, ввод a, b, c, вычисление p, t, h a , h b , h c , вывод результатов и останов.

2.3 Структуры алгоритмов.

Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых (т.е. основных) элементов. Естественно, что при таком подходе к алгоритмам изучение основных принципов их конструирования должно начинаться с изучения этих базовых элементов

Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур: следование, ветвление, цикл.

Характерной особенностью базовых структур является наличие в них одного входа и одного выхода.

1. Базовая структура следование. Образуется из последовательности действий, следующих одно за другим:

2. Базовая структура ветвление. Обеспечивает в зависимости от результата проверки условия (да или нет) выбор одного из альтернативных путей работы алгоритма. Каждый из путей ведет к общему выходу, так что работа алгоритма будет продолжаться независимо от того, какой путь будет выбран.

Структура ветвление существует в четырех основных вариантах:

Если-то-иначе;

Выбор-иначе.

1) если-то если условие то действия конец если 2) если-то-иначе если условие то действия 1 иначе действия 2 конец если 3) выбор выбор при условие 1: действия 1 при условие 2: действия 2 . . . . . . . . . . . . при условие N: действия N конец выбора 4) выбор-иначе выбор при условие 1: действия 1 при условие 2: действия 2 . . . . . . . . . . . . при условие N: действия N иначе действия N+1 конец выбора

Пример. Составить блок-схему алгоритма вычисления функции

Базовая структура цикл. Обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла.

Структура цикл существует в трех основных вариантах:

Цикл типа для .

Предписывает выполнять тело цикла для всех значений некоторой переменной (параметра цикла) в заданном диапазоне.

Цикл типа пока .

Предписывает выполнять тело цикла до тех пор, пока выполняется условие, записанное после слова пока.

Цикл типа делать - пока .

Предписывает выполнять тело цикла до тех пор, пока выполняется условие, записанное после слова пока. Условие проверяется после выполнения тела цикла.

Заметим, что циклы для и пока называют также циклами с предпроверкой условия а циклы делать - пока - циклами с постпроверкой условия. Иными словами, тела циклов для и пока могут не выполниться ни разу, если условие окончания цикла изначально не верно. Тело цикла делать - пока выполнится как минимум один раз, даже если условие окончания цикла изначально не верно.

Цикл для i от i1 до i2 шаг i3 тело цикла (последовательность действий) конец цикла цикл пока условие тело цикла (последовательность действий) конец цикла цикл делать тело цикла (последовательность действий) пока условие конец цикла

с заданной точностью (для данного знакочередующегося степенного ряда требуемая точность будет достигнута, когда очередное слагаемое станет по абсолютной величине меньше).

Вычисление сумм - типичная циклическая задача. Особенностью же нашей конкретной задачи является то, что число слагаемых (а, следовательно, и число повторений тела цикла) заранее неизвестно. Поэтому выполнение цикла должно завершиться в момент достижения требуемой точности.

При составлении алгоритма нужно учесть, что знаки слагаемых чередуются и степень числа х в числителях слагаемых возрастает.

Решая эту задачу "в лоб" путем вычисления на каждом i-ом шаге частичной суммы

S:=S+(-1)**(i-1)*x**i/i ,

мы получим очень неэффективный алгоритм, требующий выполнения большого числа операций. Гораздо лучше организовать вычисления следующим образом: если обозначить числитель какого-либо слагаемого буквой р, то у следующего слагаемого числитель будет равен -р*х (знак минус обеспечивает чередование знаков слагаемых), а само слагаемое m

будет равно p/i, где i - номер слагаемого.

Алгоритм, в состав которого входит итерационный цикл, называется итерационным алгоритмом. Итерационные алгоритмы используются при реализации итерационных численных методов. В итерационных алгоритмах необходимо обеспечить обязательное достижение условия выхода из цикла (сходимость итерационного процесса). В противном случае произойдет зацикливание алгоритма, т.е. не будет выполняться основное свойство алгоритма - результативность.

Вложенные циклы.

Возможны случаи, когда внутри тела цикла необходимо повторять некоторую последовательность операторов, т. е. организовать внутренний цикл. Такая структура получила название цикла в цикле или вложенных циклов. Глубина вложения циклов (то есть количество вложенных друг в друга циклов) может быть различной.

При использовании такой структуры для экономии машинного времени необходимо выносить из внутреннего цикла во внешний все операторы, которые не зависят от параметра внутреннего цикла.

Пример вложенных циклов для. Вычислить сумму элементов заданной матрицы А(5,3).

Пример вложенных циклов пока. Вычислить произведение тех элементов заданной матрицы A(10,10), которые расположены на пересечении четных строк и четных столбцов.

Разработка блок-схемы алгоритма решения задачи

Цель работы : изучение графического способа описания алгоритма решения задачи.

Задачи работы :

    ознакомиться с основными способами представления алгоритмов;

    освоить графический способ описания алгоритмов.

1.1. Порядок выполнения работы

    Изучите теоретические сведения по теме данного раздела (п. 1.2)

    Ознакомьтесь с постановкой задачи (п. 1.3). Вариант задания соответствует вашему номеру в списке группы.

    Разработайте блок-схему алгоритма решения поставленной задачи.

    Ответьте на контрольные вопросы.

    Подготовьте отчет о выполнении практической работы, который должен содержать:

    титульный лист;

    цель практической работы;

    постановку задачи;

    блок-схему алгоритма решения поставленной задачи;

    ответы на контрольные вопросы;

    выводы по практической работе.

1.2. Общие сведения

Одним из наиболее трудоемких этапов решения задачи на ЭВМ является разработка алгоритма.

Под алгоритмом понимается точное предписание, определяющее вычислительный процесс, ведущий от варьируемых начальных данных к искомому результату.

Основными характерными свойствами алгоритма являются:

    детерминированность (определенность) – при заданных исходных данных обеспечивается однозначность искомого результата;

    массовость – пригодность для задач данного типа при исходных данных, принадлежащих заданному подмножеству;

    результативность – реализуемый вычислительный процесс выполняется за конечное число этапов с выдачей осмысленного результата;

    дискретность – возможность разбиения алгоритма на отдельные этапы, выполнение которых не вызывает сомнений.

Выделяют следующие типы вычислительных процессов :

    Линейный вычислительный процесс.

Для получения результата необходимо выполнить некоторые операции в определенной последовательности.

    Разветвленный вычислительный процесс.

Конкретная последовательность операций зависит от значений одного или нескольких параметров. Например, если дискриминант квадратного уравнения не отрицателен, то уравнение имеет два корня, а если отрицателен, то действительных корней нет.

    Циклический вычислительный процесс

Для получения результата некоторую последовательность действий необходимо выполнить несколько раз. Например, для того, чтобы получить таблицу значений функции на заданном интервале изменения аргумента с заданным шагом, необходимо соответствующее количество раз определить следующее значение аргумента и посчитать для него значение функции.

В свою очередь, существуют также несколько типов циклического вычислительного процесса , а именно:

    Счетные циклы (циклы с заданным количеством повторений) – ­­ это циклические процессы, для которых количество повторений известно.

    Итерационные циклы – это циклические процессы, завершающиеся по достижении или нарушении некоторых условий.

    Поисковые циклы – это циклические процессы, из которых возможны два варианта выхода:

Выход по завершению процесса;

Досрочный выход по какому-либо дополнительному условию.

По типу вычислительного процесса, реализуемого алгоритмом, различают:

Алгоритмы линейной структуры;

Алгоритмы разветвленной структуры;

Алгоритмы циклической структуры.

Алгоритмы решения практических задач обычно имеют комбинированную структуру, то есть включают в себя все три типа вычислительных процессов.

К изобразительным средствам описания алгоритмов относятся следующие основные способы их представления:

Словесный (записи на естественном языке);

Структурно-стилизованный (записи на алгоритмическом языке и псевдокод);

Графический (изображение схем и графических символов);

Программный (тексты на языках программирования).

Словесный способ описания алгоритма представляет собой описание последовательных пронумерованных этапов обработки данных и задается в произвольном изложении на естественном языке.

Пример 1.1.

Алгоритм сложения двух чисел (a и b).

    Спросить, чему равно число a.

    Спросить, чему равно число b.

    Сложить a и b, результат присвоить с.

    Сообщить результат с.

Достоинством данного способа является простота описания, а к недостаткам можно отнести то, что такой подход многословен и не имеет строгой формализации, поэтому допускает неоднозначность толкования отдельных предписаний, в силу чего словесный способ представления алгоритма не имеет широкого распространения.

Для строгого задания различных структур данных и алгоритмов их обработки требуется иметь такую систему формальных обозначений и правил, чтобы смысл всякого используемого предписания трактовался точно и однозначно. Соответствующие системы правил называются языками описаний . К ним относятся алгоритмические языки (псевдокоды), блок-схемы и языки программирования.

Структурно-стилизованный способ описания алгоритма основан на записи алгоритмов в формализованном представлении предписаний, задаваемых путем использования ограниченного набора типовых синтаксических конструкций, называемых часто псевдокодами.

Достоинством псевдокодов является близость к языкам программирования, а недостатками, в свою очередь, являются сложность освоения и невозможность непосредственного ввода алгоритма для решения на ЭВМ, т.е. необходимость перевода на язык программирования.

Графический способ описания алгоритма предполагает, что для описания структуры алгоритма используется совокупность графических изображений (блоков), соединяемых линиями передачи управления. Такое изображение называется методом блок-схем .

Блок-схема алгоритма – это графическое представление хода решения задачи. Блок-схема состоит из блоков, соединенных линиями, а блоки изображаются в виде геометрических фигур, называемых символами. Внутри символов записываются указания о выполняемых блоком функциях – формулы, текст, логические выражения. Вид символов и правила выполнения блок-схем стандартизированы – ГОСТ 19.701-90 содержит перечень символов, их наименования, отображаемые функции, формы и размеры, а также правила выполнения схем. При разработке алгоритма каждое действие обозначают соответствующим блоком, показывая их последовательность линиями со стрелками на конце. Названия, обозначения и назначение элементов блок-схем приводится на рис. 1.1.

Рисунок 1.1 – Основные блоки

Следует упомянуть некоторые основные правила выполнения блок-схем, которыми надлежит руководствоваться при графическом описании алгоритмов. Начало алгоритмов отмечается символом "Терминатор", из которого выходит одна линия. В нем записывается слово "Пуск" ("Начало"). Конец алгоритма отмечается этим же символом, в котором записывается слово "Останов" ("Конец"). В этом случае данный символ не имеет ни одной выходной линии, а на него может замыкаться одна или более линий. Символ “Процесс” может иметь одну или несколько входных линий и только одну выходную. Внутри символа может быть записано несколько предписаний – в этом случае они выполняются в порядке записи. Представление отдельных операций достаточно свободно. Для обозначения вычислений можно использовать математические выражения, для пересылки данных – стрелки, для других действий – пояснения на естественном языке, например, А: = Х + 4; i: = i + 1, ––> B.

Линии потока должны быть параллельны сторонам листа. Основные направления линий потока – сверху вниз и слева направо – стрелкой не обозначаются. В других случаях на конце линии потока ставится стрелка, а в месте слияния линий ставится точка. Если блок-схема не умещается на одном листе, используют соединители. При переходе на другой лист или получении управления с другого листа в комментарии указывается номер листа, например "с листа 3" "на лист 1".

Для записи алгоритма любой сложности достаточно трех базовых структур :

    следование - обозначает последовательное выполнение действий (рис. 1.2, а);

    ветвление - соответствует выбору одного из двух вариантов действий (рис. 1.2, б);

    цикл-пока - определяет повторение действий, пока не будет нарушено условие, выполнение которого проверяется в начале цикла (рис. 1.2, в).

Рисунок 1.2 – Базовые алгоритмические структуры

Кроме этого, при описании алгоритмов используются дополнительные алгоритмические структуры , производные от базовых, каждая из которых может быть реализована через базовые структуры:

    выбор - выбор одного варианта из нескольких в зависимости от значения некоторой величины (рис. 1.3, а, б);

    цикл-до - повторение некоторых действий до выполнения заданного условия, проверка которого осуществляется после выполнения действий в цикле (рис. 1.3, в, г);

    цикл с заданным числом повторений (счетный цикл ) повторение некоторых действий указанное число раз (рис. 1.3, д, е).

Рисунок 1.3 – Реализация дополнительных алгоритмических структур

через базовые структуры

Рассмотрим примеры графического описания алгоритмов различных типов: линейного, разветвляющегося, циклического и комбинированного (рис. 1.4 – 1.7).

Пример 1.2. Линейный алгоритм.

Алгоритм вычисления значения выражения K=3b+6а (рис. 1.4) .

Рисунок 1.4 – Пример блок-схемы линейного алгоритма

Пример 1.3. Разветвляющийся алгоритм.

Алгоритм, определяющий, пройдет ли график функции y=3x+4 через точку с координатами x1,y1 (рис. 1.5).

Рисунок 1.5 – Пример блок-схемы разветвляющегося алгоритма

Пример 1.4. Циклический алгоритм.

Алгоритм, определяющий факториал натурального числа n (рис. 1.6):

n ! = 1*2*3*….*(n -1)* n

5!=1*2*3*4*5=120

Рисунок 1.6 – Пример блок-схемы циклического алгоритма

Пример 1.5. Комбинированный алгоритм.

Необходимо определить наибольший общий делитель двух натуральных чисел А и В.

Для решения поставленной задачи используем алгоритм Евклида, который заключается в последовательной замене большего из чисел на разность большего и меньшего, пока числа не станут равны. Рассмотрим данный алгоритм на двух примерах.

Пример (а): А=225, В=125. Применяя алгоритм Евклида, получаем для А и В наибольший общий делитель, равный 25.

Пример (б): А=13, В=4. В этом случае наибольший общий делитель А и В равен 1.

B

50-25=25

Блок-схема алгоритма Евклида для нахождения наибольшего общего делителя двух натуральных чисел показана на рис. 1.7.

Рисунок 1.7 – Пример блок-схемы комбинированного алгоритма

Блок-схема алгоритма детально отображает все особенности разработанного алгоритма, но иногда такой высокий уровень детализации не позволяет выделить суть алгоритма. В этих случаях для описания алгоритма используют псевдокод . Псевдокод базируется на тех же основных структурах, что и структурные схемы алгоритма (табл. 1.1).

Пример 1.6. Описание алгоритма Евклида на псевдокоде .

Алгоритм Евклида:

Ввести А,В

цикл-пока А ≠ В

если А > В

то А:= А - В

иначе В:= В - А

все - если

все-цикл

Вывести А

Конец алгоритма.

Таблица 1.1 – Пример псевдокода для записи базовых алгоритмических структур

Структура

Псевдокод

Структура

Псевдокод

Следование

Выбор

Все-выбор

Ветвление

Если

заданным

количеством повторений

Для =

иначе

Все - если

Все-цикл

Цикл-пока

Цикл-пока

Выполнять

Все-цикл

1.3. Задачи для составления блок-схем алгоритмов

    Дано целое число m>1.

Получить наименьшее целое k, при котором 4 k >m.

Вычислить произведение

    Дано целое число n.

Получить наименьшее число вида 2 r , превосходящее n (r - натуральное).

    Даны целые числа n, k (n  k  0).

Вычислить.

    Дано натуральное число n и действительное число a.

Вычислить произведение .

    Дано натуральное число n.

Вычислить сумму .

    Даны действительное число х и натуральное число n.

Вычислить, не используя операцию возведения в степень.

    Дано натуральное число n.

Вычислить сумму:

    Даны действительные числа x и a, натуральное n.

Вычислить:

Вычислить:

    Даны натуральные числа n, m. Получить сумму m последних цифр числа n.

    Пусть n- натуральное число. Вычислить сумму.

    Дано натуральное число n.

Вычислить сумму:

Контрольные вопросы

    Дайте определение алгоритма.

    Перечислите основные свойства алгоритмов и раскройте их сущность.

    Как подразделяются алгоритмы по типу реализуемого вычислительного процесса?

    Какие способы описания алгоритмов вам известны?

    Что понимается под графическим способом описания алгоритмов? В чем состоит преимущество данного способа перед словесным описанием алгоритма?

    Курсовая работа >> Информатика

    Весов ребер оставного дерева. 2.4 Блок -схема Рисунок 7 – Блок -схема алгоритма решения задачи 2.5 Обоснование выбора языка программирования Турбо... , интегрированную среду, намного ускоряющую процесс разработки программ. Этот программный продукт прошел...

  1. Алгоритмы и основы программирования

    Практическая работа >> Информатика, программирование

    Составление программ решения различных задач на электронных вычислительных машинах; наука, занимающаяся разработкой методов... . Блок -схема данного линейного алгоритма показана на рисунке 4. Пример 1. Вычислить при x=2,3 В общем случае, алгоритм решения ...

  2. Построение блок схем алгоритмов . Алгоритмические языки высокого уровня

    Реферат >> Информатика

    Подход к решению поставленных задач . Задачи реализованы на трех различных языках программирования. Блок -схемы алгоритмов , листинги программ... время. Алгоритм решения задачи получается более эффективным, если ис­пользовать метод пошаговой разработки , суть...

  3. Системное и программное обеспечение

    Реферат >> Информатика

    ... : Разработка блок схемы алгоритма решения задачи по контролю знаний слушателей ФПК. ОписаниеФФффуввыа блоков схемы алгоритма решения задачи . Блок 1 ... – ввести имя (обозначение) задачи , ввести...

Мастер – класс по информатике

Тема «Создание блок-схем»

Ход мастер – класса.

Здравствуйте уважаемые коллеги. Меня зовут Федорова Юлия Николаевна. Сегодня я хочу вас научить создавать блок-схемы.

Блок схема является одной из форм записи алгоритма наряду со словесной и записью на языке программирования.

Словесная форма записи алгоритма наверное знакома всем.

Возьмем, к примеру, словесный алгоритм приготовления теста для выпечки коржа или печенья. (Размягчить 200 г маргарина, влить пол стакана воды, добавить 3 стакана муки , перемешать, чтобы не было комков , положить в холод на 30 минут. )

Для более наглядного представления алгоритма широко используется графическая форма- т.е блок схема.

В отличие от словесной блок-схема является более компактной и наглядной

Итак посмотрим определение на слайде

Блок – схема алгоритма – изображение алгоритма в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

В схеме алгоритма каждому типу действий соответствует геометрическая фигура. Фигуры соединяются линиями переходов, определяющими очередность выполнения действий.

Стрелки, связывают эти фигуры и задают порядок выполнения соответствующих шагов.

Но линейные алгоритмы встречаются в этой жизни очень редко.

Мы очень часто встречаем повторяющиеся действия или события, например: смена времени года, смена дня и ночи. Повторяющаяся последовательность действий называется циклом.

Алгоритмы, содержащие повторяющиеся действия, называются циклическими.

Часто возникает условие, которое надо либо выполнять, либо нет. Тогда порядок выполнения действий будет зависеть от выполнения некоторого условия. И появляется еще одна графическая структура.

Алгоритмы, в которых осуществляется выбор действий в зависимости от какого-то условия, называются разветвляющимися.

В зависимости от условия выбираем то или иное решение, но чтобы оно привело к положительному результату. Пример на слайде.


Итак самой распространенной и простой является блок-схема разветвляющего алгоритма, т.е та где есть условие

И чтобы в этом убедится я предлагаю коллегам самим составить блок-схему и прочитать ее, проявив свою фантазию.

Дается задание фокус-группам.

Если вещество проводит ток, то это проводник, если нет то это изолятор.

Задайте вопрос к глаголу. Если есть мягкий знак в вопросе, значит пишем –ТЬСЯ с мягким знаком, если нет, то пишем –ТСЯ без мягкого знака.

Пока работают фокус-группы, я работаю с аудиторией зала.

«…Чтоб тебя на земле не теряли,
Постарайся себя не терять!»

Хорошая тематика классного часа в 11 классе.

Вывод: такие блок-схемы можно составлять по любому предмету, идет осмысление текста, наглядное представление информации, компактность материала, применение в дальнейшем (правила по русскому языку, математики).

Составляя блок-схемы учащиеся рассуждают и приходят к конечному результату. Они сами принимают решения и аргументируют свой выбор, не боятся делать ошибки и творчески подходят к выполнению задания.

Такой прием составляет реальную основу для формирования самостоятельности. А также работа с алгоритмом а следовательно и построение блок-схем является одним из этапов работы над проектом, что ведет к развитию ключевых компетентностей.

Кто из вас знаком с блок-схемами повторили, ведь новое хорошо забытое старое, кто услышал это впервые я надеюсь, что вы это примените в своей педагогической деятельности и получите положительный результат.

В заключение хочу сказать, что вся наша жизнь – это алгоритм сложной структуры. Я желаю, чтобы каждое ваше действие было обдуманным, правильно выбранным и приводило к правильному, достойному результату!

Что еще почитать