Определенный интеграл теория для чайников. Сложные интегралы. Исторические предпосылки возникновения понятия интеграла

Интегральное исчисление.

Первообразная функция.

Определение: Функция F(x) называется первообразной функцией функции f(x) на отрезке , если в любой точке этого отрезка верно равенство:

Надо отметить, что первообразных для одной и той же функции может быть бесконечно много. Они будут отличаться друг от друга на некоторое постоянное число.

F 1 (x) = F 2 (x) + C.

Неопределенный интеграл.

Определение: Неопределенным интегралом функции f(x) называется совокупность первообразных функций, которые определены соотношением:

Записывают:

Условием существования неопределенного интеграла на некотором отрезке является непрерывность функции на этом отрезке.

Свойства:

1.

2.

3.

4.

Пример:

Нахождение значения неопределенного интеграла связано главным образом с нахождением первообразной функции. Для некоторых функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

Для удобства значения неопределенных интегралов большинства элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций.

Интеграл

Значение

Интеграл

Значение

lnsinx+ C

ln

Методы интегрирования.

Рассмотрим три основных метода интегрирования.

Непосредственное интегрирование.

Метод непосредственного интегрирования основан на предположении о возможном значении первообразной функции с дальнейшей проверкой этого значения дифференцированием. Вообще, заметим, что дифференцирование является мощным инструментом проверки результатов интегрирования.

Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования
можно сделать вывод, что искомый интеграл равен
, где С – некоторое постоянное число. Однако, с другой стороны
. Таким образом, окончательно можно сделать вывод:

Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и первообразных.

Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

Способ подстановки (замены переменных).

Теорема: Если требуется найти интеграл
, но сложно отыскать первообразную, то с помощью замены x = (t) и dx = (t)dt получается:

Доказательство : Продифференцируем предлагаемое равенство:

По рассмотренному выше свойству №2 неопределенного интеграла:

f (x ) dx = f [ (t )]  (t ) dt

что с учетом введенных обозначений и является исходным предположением. Теорема доказана.

Пример. Найти неопределенный интеграл
.

Сделаем замену t = sinx , dt = cosxdt .

Пример.

Замена
Получаем:

Ниже будут рассмотрены другие примеры применения метода подстановки для различных типов функций.

Интегрирование по частям.

Способ основан на известной формуле производной произведения:

(uv) = uv + vu

где u и v – некоторые функции от х.

В дифференциальной форме: d(uv) = udv + vdu

Проинтегрировав, получаем:
, а в соответствии с приведенными выше свойствами неопределенного интеграла:

или
;

Получили формулу интегрирования по частям, которая позволяет находить интегралы многих элементарных функций.

Пример.

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

Пример.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

Таким образом, интеграл найден вообще без применения таблиц интегралов.

Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Пример.

Интегрирование элементарных дробей.

Определение: Элементарными называются дроби следующих четырех типов:

I.
III.

II.
IV.

m, n – натуральные числа (m  2, n  2) и b 2 – 4ac <0.

Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида III может быть представлен в виде:

Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам.

Рассмотрим применение указанной выше формулы на примерах.

Пример.

Вообще говоря, если у трехчлена ax 2 + bx + c выражение b 2 – 4ac >0, то дробь по определению не является элементарной, однако, тем не менее ее можно интегрировать указанным выше способом.

Пример .

Пример.

Рассмотрим теперь методы интегрирования простейших дробей IV типа.

Сначала рассмотрим частный случай при М = 0, N = 1.

Тогда интеграл вида
можно путем выделения в знаменателе полного квадрата представить в виде
. Сделаем следующее преобразование:

Второй интеграл, входящий в это равенство, будем брать по частям.

Обозначим:

Для исходного интеграла получаем:

Полученная формула называется рекуррентной. Если применить ее n-1 раз, то получится табличный интеграл
.

Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.

В полученном равенстве первый интеграл с помощью подстановки t = u 2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n , а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

Пример :

Интегрирование рациональных функций.

Интегрирование рациональных дробей.

Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

Теорема: Если
- правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P (x ) = (x - a ) …(x - b ) (x 2 + px + q ) …(x 2 + rx + s ) ), то эта дробь может быть разложена на элементарные по следующей схеме:

где A i , B i , M i , N i , R i , S i – некоторые постоянные величины.

При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин A i , B i , M i , N i , R i , S i применяют так называемый метод неопределенных коэффициентов , суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

Применение этого метода рассмотрим на конкретном примере.

Пример.

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:




Пример.

Т.к. дробь неправильная, то предварительно следует выделить у нее целую часть:

6x 5 – 8x 4 – 25x 3 + 20x 2 – 76x – 7 3x 3 – 4x 2 – 17x + 6

6x 5 – 8x 4 – 34x 3 + 12x 2 2x 2 + 3

9x 3 + 8x 2 – 76x - 7

9x 3 – 12x 2 – 51x +18

20x 2 – 25x – 25

Разложим знаменатель полученной дроби на множители. Видно, что при х = 3 знаменатель дроби превращается в ноль. Тогда:

3x 3 – 4x 2 – 17x + 6 x - 3

3x 3 – 9x 2 3x 2 + 5x - 2

Таким образом 3x 3 – 4x 2 – 17x + 6 = (x – 3)(3x 2 + 5x – 2) = (x – 3)(x + 2)(3x – 1). Тогда:

Для того, чтобы избежать при нахождении неопределенных коэффициентов раскрытия скобок, группировки и решения системы уравнений (которая в некоторых случаях может оказаться достаточно большой) применяют так называемый метод произвольных значений . Суть метода состоит в том, что в полученное выше выражение подставляются поочередно несколько (по числу неопределенных коэффициентов) произвольных значений х. Для упрощения вычислений принято в качестве произвольных значений принимать точки, при которых знаменатель дроби равен нулю, т.е. в нашем случае – 3, -2, 1/3. Получаем:

Окончательно получаем:

=

Пример.

Найдем неопределенные коэффициенты:



Тогда значение заданного интеграла:

Интегрирование некоторых тригонометрических

функций.

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.

Интеграл вида
.

Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx.

Интегралы этого вида вычисляются с помощью подстановки
. Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную.

,

Тогда

Таким образом:

Описанное выше преобразование называется универсальной тригонометрической подстановкой.

Пример.

Несомненным достоинством этой подстановки является то, что с ее помощью всегда можно преобразовать тригонометрическую функцию в рациональную и вычислить соответствующий интеграл. К недостаткам можно отнести то, что при преобразовании может получиться достаточно сложная рациональная функция, интегрирование которой займет много времени и сил.

Однако при невозможности применить более рациональную замену переменной этот метод является единственно результативным.

Пример.

Интеграл вида
если

функция R cosx .

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx .

Функция
может содержать cosx только в четных степенях, а, следовательно, может быть преобразована в рациональную функцию относительно sinx.

Пример.

Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

Интеграл вида
если

функция R является нечетной относительно sinx .

По аналогии с рассмотренным выше случаем делается подстановка t = cosx .

Пример.

Интеграл вида

функция R четная относительно sinx и cosx .

Для преобразования функции R в рациональную используется подстановка

t = tgx.

Пример.

Интеграл произведения синусов и косинусов

различных аргументов.

В зависимости от типа произведения применятся одна из трех формул:

Пример.

Пример.

Иногда при интегрировании тригонометрических функций удобно использовать общеизвестные тригонометрические формулы для понижения порядка функций.

Пример.

Пример.

Иногда применяются некоторые нестандартные приемы.

Пример.

Интегрирование некоторых иррациональных функций.

Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.

Рассмотрим некоторые приемы для интегрирования различных типов иррациональных функций.

Интеграл вида
где
n - натуральное число.

С помощью подстановки
функция рационализируется.

Пример.

Если в состав иррациональной функции входят корни различных степеней, то в качестве новой переменной рационально взять корень степени, равной наименьшему общему кратному степеней корней, входящих в выражение.

Проиллюстрируем это на примере.

Пример.

Интегрирование биноминальных дифференциалов.

Ранее мы по заданной функции, руководствуясь различными формулами и правилами, находили ее производную. Производная имеет многочисленные применения: это скорость движения (или, обобщая, скорость протекания любого процесса); угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; она помогает решать задачи на оптимизацию.

Но наряду с задачей о нахождении скорости по известному закону движения встречается и обратная задача - задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой v=gt. Найти закон движения.
Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = v(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна gt. Нетрудно догадаться, что \(s(t) = \frac{gt^2}{2} \). В самом деле
\(s"(t) = \left(\frac{gt^2}{2} \right)" = \frac{g}{2}(t^2)" = \frac{g}{2} \cdot 2t = gt \)
Ответ: \(s(t) = \frac{gt^2}{2} \)

Сразу заметим, что пример решен верно, но неполно. Мы получили \(s(t) = \frac{gt^2}{2} \). На самом деле задача имеет бесконечно много решений: любая функция вида \(s(t) = \frac{gt^2}{2} + C \), где C - произвольная константа, может служить законом движения, поскольку \(\left(\frac{gt^2}{2} +C \right)" = gt \)

Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например при t = 0. Если, скажем, s(0) = s 0 , то из равенства s(t) = (gt 2)/2 + C получаем: s(0) = 0 + С, т. е. C = s 0 . Теперь закон движения определен однозначно: s(t) = (gt 2)/2 + s 0 .

В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения, например: возведение в квадрат (х 2) и извлечение квадратного корня (\(\sqrt{x} \)), синус (sin x) и арксинус (arcsin x) и т. д. Процесс нахождения производной по заданной функции называют дифференцированием , а обратную операцию, т. е. процесс нахождения функции по заданной производной, - интегрированием .

Сам термин «производная» можно обосновать «по-житейски»: функция у = f(x) «производит на свет» новую функцию у" = f"(x). Функция у = f(x) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у" = f"(x), первичный образ, или первообразная.

Определение. Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке X, если для \(x \in X \) выполняется равенство F"(x) = f(x)

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры.
1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для любого х справедливо равенство (x 2)" = 2х
2) Функция у = х 3 является первообразной для функции у = 3х 2 , поскольку для любого х справедливо равенство (x 3)" = 3х 2
3) Функция у = sin(x) является первообразной для функции y = cos(x), поскольку для любого x справедливо равенство (sin(x))" = cos(x)

При нахождении первообразных, как и производных, используются не только формулы, но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило нахождения первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило нахождения первообразных.

Правило 2. Если F(x) - первообразная для f(x), то kF(x) - первообразная для kf(x).

Теорема 1. Если y = F(x) - первообразная для функции y = f(x), то первообразной для функции у = f(kx + m) служит функция \(y=\frac{1}{k}F(kx+m) \)

Теорема 2. Если y = F(x) - первообразная для функции y = f(x) на промежутке X, то у функции у = f(x) бесконечно много первообразных, и все они имеют вид y = F(x) + C.

Методы интегрирования

Метод замены переменной (метод подстановки)

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования (то есть подстановки). При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся. Общих методов подбора подстановок не существует. Умение правильно определить подстановку приобретается практикой.
Пусть требуется вычислить интеграл \(\textstyle \int F(x)dx \). Сделаем подстановку \(x= \varphi(t) \) где \(\varphi(t) \) - функция, имеющая непрерывную производную.
Тогда \(dx = \varphi " (t) \cdot dt \) и на основании свойства инвариантности формулы интегрирования неопределенного интеграла получаем формулу интегрирования подстановкой:
\(\int F(x) dx = \int F(\varphi(t)) \cdot \varphi " (t) dt \)

Интегрирование выражений вида \(\textstyle \int \sin^n x \cos^m x dx \)

Если m нечётное, m > 0, то удобнее сделать подстановку sin x = t.
Если n нечётное, n > 0, то удобнее сделать подстановку cos x = t.
Если n и m чётные, то удобнее сделать подстановку tg x = t.

Интегрирование по частям

Интегрирование по частям - применение следующей формулы для интегрирования:
\(\textstyle \int u \cdot dv = u \cdot v - \int v \cdot du \)
или:
\(\textstyle \int u \cdot v" \cdot dx = u \cdot v - \int v \cdot u" \cdot dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Процесс решения интегралов в науке под названием "математика" называется интегрированием. С помощью интегрирования можно находить некоторые физические величины: площадь, объем, массу тел и многое другое.

Интегралы бывают неопределенными и определенными. Рассмотрим вид определенного интеграла и попытаемся понять его физический смысл. Представляется он в таком виде: $$ \int ^a _b f(x) dx $$. Отличительная черта написание определенного интеграла от неопределенного в том, что есть пределы интегрирования a и b. Сейчас узнаем для чего они нужны, и что всё-таки значит определенный интеграл. В геометрическом смысле такой интеграл равен площади фигуры, ограниченной кривой f(x), линиями a и b, и осью Ох.

Из рис.1 видно, что определенный интеграл - это и есть та самая площадь, что закрашена серым цветом. Давайте, проверим это на простейшем примере. Найдем площадь фигуры на изображении представленном ниже с помощью интегрирования, а затем вычислим её обычным способом умножения длины на ширину.

Из рис.2 видно, что $ y=f(x)=3 $, $ a=1, b=2 $. Теперь подставим их в определение интеграла, получаем, что $$ S=\int _a ^b f(x) dx = \int _1 ^2 3 dx = $$ $$ =(3x) \Big|_1 ^2=(3 \cdot 2)-(3 \cdot 1)=$$ $$=6-3=3 \text{ед}^2 $$ Сделаем проверку обычным способом. В нашем случае длина = 3, ширина фигуры = 1. $$ S = \text{длина} \cdot \text{ширина} = 3 \cdot 1 = 3 \text{ед}^2 $$ Как видим, всё отлично совпало.

Появляется вопрос: как решать интегралы неопределенные и какой у них смысл? Решение таких интегралов - это нахождение первообразных функций. Этот процесс противоположный нахождению производной. Для того, чтобы найти первообразную можно использовать нашу помощь в решении задач по математике или же необходимо самостоятельно безошибочно вызубрить свойства интегралов и таблицу интегрирования простейших элементарных функций. Нахождение выглядит так $$ \int f(x) dx = F(x) + C \text{где} F(x) $ - первообразная $ f(x), C = const $.

Для решения интеграла нужно интегрировать функцию $ f(x) $ по переменной. Если функция табличная, то записывается ответ в подходящем виде. Если же нет, то процесс сводится к получению табличной функции из функции $ f(x) $ путем хитрых математических преобразований. Для этого есть различные методы и свойства, которые рассмотрим далее.

Итак, теперь составим алгоритм как решать интегралы для чайников?

Алгоритм вычисления интегралов

  1. Узнаем определенный интеграл или нет.
  2. Если неопределенный, то нужно найти первообразную функцию $ F(x) $ от подынтегральной $ f(x) $ с помощью математических преобразований приводящих к табличному виду функцию $ f(x) $.
  3. Если определенный, то нужно выполнить шаг 2, а затем подставить пределы $ а $ и $ b $ в первообразную функцию $ F(x) $. По какой формуле это сделать узнаете в статье "Формула Ньютона Лейбница".

Примеры решений

Итак, вы узнали как решать интегралы для чайников, примеры решения интегралов разобрали по полочкам. Узнали физический и геометрический их смысл. О методах решения будет изложено в других статьях.

4.1. ПРОСТЕЙШИЕ МЕТОДЫ ИНТЕГРИРОВАНИЯ 4.1.1. Понятие неопределенного интеграла

В дифференциальном исчислении рассматривалась задача нахождения производной или дифференциала по заданной функции y = F(x), т. е. необходимо было найти f (x) = F"(x) или dF(x) = F"(x) dx = f (x) dx. Поставим обратную задачу: восстановить продифференцированную функцию, т. е., зная производную f(x) (или дифференциал f(x)dx), найти такую функцию F(x), чтобы F"(x) = f (x). Эта задача оказывается значительно более трудной, чем задача дифференцирования. Например, пусть известна скорость перемещения точки, а надо найти закон

ее перемещения S = S(t), причемДля решения подобных

задач вводятся новые понятия и действия.

Определение. Дифференцируемая функция F(x) называется первообразной для функции f (x) на (a; b), если F"(x) = f (x) на (a; b).

Например, для f (x) = x 2 первообразная так как

для f (x) = cos x первообразной будет F(x) = sin x, потому что F"(x) = (sin x)" = cos x, что совпадает с f (x).

Всегда ли существует первообразная для заданной функции f (x)? Да, если эта функция непрерывна на (a; b). Кроме того, первообразных бесчисленное множество, и отличаются они друг от друга только постоянным слагаемым. Действительно, sin x + 2, sin x - 2, sin x + c - все эти функции будут первообразными для cos x (производная от постоянной величины равна 0) - рис. 4.1.

Определение. Выражение F(x) + C, где С - произвольная постоянная величина, определяющее множество первообразных для функции f (x), называется неопределенным интегралом и обозначается символом , т. е., где знак - знак неопределенного

интеграла, f (x) - называется подынтегральной функцией, f (x)dx - подынтегральньм выражением, х - переменной интегрирования.

Рис. 4.1. Пример семейства интегральных кривых

Определение. Операция нахождения первообразной по заданной производной или дифференциалу называется интегрированием этой функции.

Интегрирование - действие, обратное дифференцированию, его можно проверить дифференцированием, причем дифференцирование однозначно, а интегрирование дает ответ с точностью до постоянной. Придавая постоянной величине С конкретные значенияпо-

лучим различные функции

каждая из которых задает на координатной плоскости кривую, называемую интегральной. Все графики интегральных кривых сдвинуты параллельно относительно друг друга вдоль оси Oy. Следовательно, геометрически неопределенный интеграл представляет собой семейство интегральных кривых.

Итак, введены новые понятия (первообразной и неопределенного интеграла) и новое действие (интегрирование), но как все-таки находить первообразную? Чтобы легко было ответить на этот вопрос, надо в первую очередь составить и выучить наизусть таблицу неопределенных интегралов от основных элементарных функций. Она получается в результате обращения соответствующих формул дифференцирования. Например, если

Обычно в таблицу включаются некоторые интегралы, полученные после применения простейших методов интегрирования. Эти формулы помечены в табл. 4.1 символом «*» и доказаны при дальнейшем изложении материала.

Таблица 4.1. Таблица основных неопределенных интегралов

Формула 11 из табл. 4.1 может иметь вид
,

так как. Аналогичное замечание и по поводу фор-

мулы 13:

4.1.2. Свойства неопределенных интегралов

Рассмотрим простейшие свойства неопределенного интеграла, которые позволят интегрировать не только основные элементарные функции.

1.Производная от неопределенного интеграла равна подынтегральной функции:

2.Дифференциал от неопределенного интеграла равен подынтегральному выражению:

3.Неопределенный интеграл от дифференциала функции равен этой функции, сложенной с произвольной постоянной:

Пример 1. Пример 2.

4.Постоянный множитель можно выносить за знак интеграла: Пример 3.

5.Интеграл от суммы или разности двух функций равен сумме или разности интегралов от этих функций:

Пример 4.

Формула интегрирования остается справедливой, если переменная интегрирования является функцией: если то

Произвольная функция, имеющая непрерывную производную. Это свойство называется инвариантностью.

Пример 5., поэтому

Сравнить с

Универсального способа интегрирования не существует. Далее будут приведены некоторые методы, позволяющие вычислить заданный интеграл с помощью свойств 1-5 и табл. 4.1.

4.1.3.Непосредственное интегрирование

Этот метод заключается в прямом использовании табличных интегралов и свойств 4 и 5. Примеры.


4.1.4.Метод разложения

Этот метод заключается в разложении подынтегральной функции в линейную комбинацию функций с уже известными интегралами.

Примеры.


4.1.5. Метод подведения под знак дифференциала

Для приведения данного интеграла к табличному бывает удобно сделать преобразования дифференциала.

1. Подведение под знак дифференциала линейной функции

отсюда
в частности, dx =
d(x + b),

дифференциал не меняется, если к переменной прибавить

или отнять постоянную величину. Если переменная увеличивается в несколько раз, то дифференциал умножается на обратную величину. Примеры с решениями.

Проверим формулы 9*, 12* и 14* из табл. 4.1, используя метод подведения под знак дифференциала:


что и требовалось доказать.

2. Подведение под знак дифференциала основных элементарных функций:

Замечание. Формулы 15* и 16* могут быть проверены дифференцированием (см. свойство 1). Например,


а это и есть подынтегральная функция из формулы 16*.

4.1.6. Метод выделения полного квадрата из квадратичного трехчлена

При интегрировании выражений типа или

выделением полного квадрата из квадратного трехчлена

ax 2 + bx + c удается свести их к табличным 12*, 14*, 15* или 16* (см. табл. 4.1).

Поскольку в общем виде эта операция выглядит сложнее, чем на самом деле, ограничимся примерами.

Примеры.

1.

Решение. Здесь мы выделяем полный квадрат из квадратного трехчлена x 2 + 6x + 9 = (x 2 + 6x + 9) - 9 + 5 = (x + 3) 2 - 4 , а затем используем метод подведения под знак дифференциала.

Рассуждая аналогично, можно вычислить следующие интегралы:

2. 3.

На заключительном этапе интегрирования была использована формула 16*.

4.1.7. Основные методы интегрирования

Таких методов два: метод замены переменной, или подстановка, и интегрирование по частям.

Метод замены переменной

Существуют две формулы замены переменной в неопределенном интеграле:

1) 2)

Здесьсуть монотонные дифференцируемые функ-

ции своих переменных.

Искусство применения метода состоит, в основном, в выборе функцийтак, чтобы новые интегралы являлись табличными или сводились к ним. В окончательном ответе следует вернуться к старой переменной.

Заметим, что подведение под знак дифференциала является частным случаем замены переменной.

Примеры.

Решение. Здесь следует ввести новую переменную t так, чтобы избавиться от квадратного корня. Положим x + 1 = t, тогда x = t 2 + 1, а dx = 2 tdt:

Решение. Заменив x - 2 на t, получим в знаменателе одночлен и после почленного деления интеграл сведется к табличному от степенной функции:

При переходе к переменной x использованы формулы:

Метод интегрирования по частям

Дифференциал произведения двух функций определяется формулой

Интегрируя это равенство (см. свойство 3), найдем:


ОтсюдаЭто и есть формула интегрирования по

частям.

Интегрирование по частям предполагает субъективное представление подынтегрального выражения в виде u . dV, и при этом интеграл должен быть проще, чемВ противном случае применение

метода не имеет смысла.

Итак, метод интегрирования по частям предполагает умение выделять из подынтегрального выражения сомножители u и dV с учетом вышеизложенных требований.

Приведем ряд типичных интегралов, которые могут быть найдены методом интегрирования по частям. 1. Интегралы вида

где P(x) - многочлен; k - постоянная. В этом случае u = P(x), а dV - все остальные сомножители.

Пример 1.

2.Интегралы типа

Здесь положим- другие сомножители.

Пример 2.


Пример 3.
Пример 4.


Любой результат можно проверить дифференцированием. Напр мер, в данном случае

Результат верен.

3.Интегралы вида

где a, b - const. За u следует взять e ax , sin bx или cos bx.

Пример 5.


Отсюда получаем Пример 6.


Отсюда


Пример 7.
Пример 8.

Решение. Здесь надо сперва сделать замену переменной, а потом интегрировать по частям:

Пример 9.
Пример 10.

Решение. Этот интеграл с равным успехом может быть найден как в результате замены переменной 1 + х 2 = t 2 , так и методом интегрирования по частям:


Самостоятельная работа

Выполнить непосредственное интегрирование (1-10).

Применить простейшие методы интегрирования (11-46).

Выполнить интегрирование, используя методы замены переменной и интегрирования по частям (47-74).

Для решения упражнений по теме «Интегрирование» рекомендуется следующая литература:

1. . Математический анализ. Неопределённый интеграл. Определённый интеграл: учебное пособие . – М.: МГИУ, 2006. – 114 с.: ил. 20.

2. , и др. Задачи и упражнения по математическому анализу для втузов/Под ред. . (любой год издания).

Семинар №1.

Нахождение неопределённых интегралов с помощью основных правил интегрирования и таблицы неопределённых интегралов.

https://pandia.ru/text/78/291/images/image002_164.gif" width="113 height=27" height="27">, то,

где С – произвольная постоянная,

2) , где k – постоянная величина,

4) .

https://pandia.ru/text/78/291/images/image008_45.gif" width="24" height="28 src="> Под знаком интеграла стоит произведение двух постоянных, которое есть, естественно, тоже постоянная. Согласно основному правилу интегрирования 2), выносим её за знак интеграла.

(2) Используем формулу 1) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image010_36.gif" width="569" height="44 src=">.gif" width="481" height="75 src=">

https://pandia.ru/text/78/291/images/image014_25.gif" width="255" height="32 src=">. В нашем случае , https://pandia.ru/text/78/291/images/image017_22.gif" width="75 height=47" height="47">, то .

(3) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(4) Пользуемся формулой 1) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е.

.

https://pandia.ru/text/78/291/images/image022_9.gif" width="551" height="91 src=">

https://pandia.ru/text/78/291/images/image024_8.gif" width="449" height="101 src=">.

(1) Воспользуемся формулой сокращённого умножения

https://pandia.ru/text/78/291/images/image026_7.gif" width="103" height="37 src=">).

(2) Пользуемся свойством степеней ().

(4) В каждом из слагаемых под знаком интеграла пользуемся свойством степеней (https://pandia.ru/text/78/291/images/image029_7.gif" width="325" height="56 src=">.

(1) Поменяем два слагаемых местами в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 6) Таблицы интегралов..gif" width="364 height=61" height="61">.

(1) Поменяем два слагаемых местами под знаком корня в знаменателе подынтегрального выражения, чтобы получить табличный интеграл.

(2) Воспользуемся формулой 11) Таблицы интегралов.

https://pandia.ru/text/78/291/images/image033_5.gif" width="625" height="75 src=">

https://pandia.ru/text/78/291/images/image035_5.gif" width="459" height="67 src=">

https://pandia.ru/text/78/291/images/image037_5.gif" width="535" height="67 src=">

(1) Подставляем .

(2) Из основного тригонометрического тождества имеем .

(3) Почленно делим каждое слагаемое числителя на знаменатель.

(4) Воспользуемся основным правилом 3) интегрирования (интеграл от суммы функций равен сумме интегралов от этих функций).

(5) Пользуемся формулой 15) Таблицы интегралов и основным правилом интегрирования 4), положив , т. е. .

Упражнения. №№ 000, 1034, 1036, 1038, 1040, 1042, 1044, 1046, 1048(а) из задачника .

Семинар №2

Интегрирование методом замены переменной

Если интеграл не является табличным, то часто используют замену переменной, а именно, полагая https://pandia.ru/text/78/291/images/image044_5.gif" width="39" height="27 src="> - непрерывно дифференцируемая функция. Подставляя в интеграл, будем иметь

Функцию https://pandia.ru/text/78/291/images/image043_5.gif" width="71" height="27"> получаем и подставляем в первообразную, зависящую от переменной t , получая в итоге первообразную зависящую от первоначальной переменной x , т. е. возвращаемся к старой переменной. Возвращаться к старой переменной следует обязательно!

В этом примере уже указана замена переменной .

https://pandia.ru/text/78/291/images/image049_5.gif" width="525" height="115 src=">

https://pandia.ru/text/78/291/images/image051_3.gif" width="408" height="83 src=">

https://pandia.ru/text/78/291/images/image053_3.gif" width="256 height=67" height="67">, так как .

При подстановке имеем .

(2) Умножаем числитель и знаменатель на .

(3) Этот интеграл «похож» на табличные 9) и 10), но заметим, что в том и другом коэффициент при квадрате неизвестного равен 1. Поэтому под корнем выносим коэффициент при за скобки.

(4) Пользуемся свойством корня квадратного из произведения двух положительных сомножителей: если и , то .

(5) Выделяем под знаком интеграла множитель.

(6) Выносим этот множитель за знак интеграла, согласно Основному правилу 2) интегрирования.

(7) Согласно формуле 10) Таблицы неопределённых интегралов получаем ответ, зависящий от переменной . Здесь , .

(8) Возвращаемся к старой переменной, проводя обратную замену, т. е..gif" width="611" height="115 src="> =

https://pandia.ru/text/78/291/images/image067_2.gif" width="47" height="21"> имеем , для нашего примера .

(2) Пользуемся основным логарифмическим тождеством: https://pandia.ru/text/78/291/images/image071_2.gif" width="111 height=32" height="32">.

(3) Приводим к общему знаменателю выражение, стоящее в знаменателе.

(4) Умножаем числитель и знаменатель подынтегрального выражения на https://pandia.ru/text/78/291/images/image072_2.gif" width="581" height="53 src=">

https://pandia.ru/text/78/291/images/image074_2.gif" width="179" height="53 src=">. Запомним это на будущее.

В этом примере также замена переменной уже указана.

https://pandia.ru/text/78/291/images/image076_2.gif" width="621" height="64 src=">.

Очень часто бывает целесообразно попробовать замену , если выражение имеется под знаком интеграла или замену https://pandia.ru/text/78/291/images/image080_2.gif" width="80" height="33">где - некоторое целое положительное число Дифференциал" href="/text/category/differentcial/" rel="bookmark">дифференциала .

Если подынтегральная функция зависит от выражения , то можно дать некоторые рекомендации по замене переменной.

https://pandia.ru/text/78/291/images/image085.jpg" width="600" height="372 src=">

https://pandia.ru/text/78/291/images/image087_2.gif" width="557" height="68 src=">

https://pandia.ru/text/78/291/images/image089_2.gif" width="343" height="64 src=">

https://pandia.ru/text/78/291/images/image091_2.gif" width="591" height="101 src=">

https://pandia.ru/text/78/291/images/image093_2.gif" width="597" height="101 src=">

https://pandia.ru/text/78/291/images/image095_2.gif" width="113" height="27">..gif" width="108" height="27 src=">.

В самом деле,

https://pandia.ru/text/78/291/images/image099_2.gif" width="125" height="27 src=">

То есть в случае, когда подынтегральная функция имеет вид https://pandia.ru/text/78/291/images/image100_2.gif" width="48" height="27"> под знак дифференциала:

https://pandia.ru/text/78/291/images/image102_2.gif" width="292" height="29 src=">. Далее делаем замену переменной .

Такого рода преобразование иногда называют «подведение под знак дифференциала».

Прежде чем разбирать примеры на эту тему, приведём таблицу, которую можно получить из таблицы неопределённых интегралов

https://pandia.ru/text/78/291/images/image105_1.gif" width="96" height="53 src=">.gif" width="135" height="53 src=">,

https://pandia.ru/text/78/291/images/image109_1.gif" width="147" height="55 src=">,

https://pandia.ru/text/78/291/images/image111_1.gif" width="172" height="60 src=">,

https://pandia.ru/text/78/291/images/image113_1.gif" width="155" height="23 src=">,

https://pandia.ru/text/78/291/images/image115_1.gif" width="128" height="55 src=">,

https://pandia.ru/text/78/291/images/image117_1.gif" width="209" height="53 src=">,

https://pandia.ru/text/78/291/images/image119_1.gif" width="215" height="53 src="> и т. д.

https://pandia.ru/text/78/291/images/image121_1.gif" width="393" height="48 src=">.

https://pandia.ru/text/78/291/images/image123_1.gif" width="587" height="101 src=">

https://pandia.ru/text/78/291/images/image125_1.gif" width="155" height="27">, то целесообразна замена . Тогда имеем

https://pandia.ru/text/78/291/images/image128_1.gif" width="592" height="88 src=">=

.

https://pandia.ru/text/78/291/images/image133_1.gif" width="560" height="60 src=">

.

https://pandia.ru/text/78/291/images/image136_1.gif" width="560" height="59 src=">.

Упражнения №№ 000, 1088, 1151, 1081, 1082, 1094.

Семинар №4

Метод интегрирования по частям в неопределённом интеграле

Этот метод основан на следующей теореме.

Теорема. Пусть функции и имеют конечные производные в промежутке , и в этом промежутке существует первообразная для функции. Тогда в промежутке существует первообразная для функции и справедлива формула

Эту формулу можно записать в виде

.

Задача при интегрировании по частям заключается в том, чтобы подынтегральное выражение представить в виде произведения так, чтобы интеграл был проще, чем , т. е. нельзя выбирать и произвольно, так как можно получить более сложный интеграл https://pandia.ru/text/78/291/images/image149_1.gif" width="45 height=29" height="29">.

Практика показывает, что большая часть интегралов «берущихся» по частям может быть разбита на три группы:

https://pandia.ru/text/78/291/images/image151.jpg" width="636" height="396 src=">

Эти интегралы находятся двукратным интегрированием по частям.

Замечание . В первой группе интегралов для интегралов вместо может быть многочлен зависящий от необязательно целой положительной степени (например https://pandia.ru/text/78/291/images/image156_0.gif" width="33" height="28 src=">.gif" width="35" height="45 src="> и т. д.).

В этом примере разбиение на множители и единственно возможное, что бывает не очень часто.

При нахождении выражения для в методе интегрирования по частям постоянную C можно положить равной нулю (см. стр.22).

https://pandia.ru/text/78/291/images/image163_0.gif" width="552" height="57 src=">

https://pandia.ru/text/78/291/images/image165_0.gif" width="623" height="176 src=">

https://pandia.ru/text/78/291/images/image167_0.gif" width="512" height="53 src=">

https://pandia.ru/text/78/291/images/image169_0.gif" width="25" height="23"> можно представить как ..gif" width="93" height="53 src=">.

https://pandia.ru/text/78/291/images/image174_0.gif" width="503" height="33 src=">.

Это пример также из второй группы интегралов.

https://pandia.ru/text/78/291/images/image176_0.gif" width="591" height="72 src=">

https://pandia.ru/text/78/291/images/image178_0.gif" width="197" height="28 src=">.

Таким образом, получаем уравнение относительно искомого интеграла https://pandia.ru/text/78/291/images/image180_0.gif" width="212 height=28" height="28">.

Переносим слагаемое в левую часть уравнения и получаем эквивалентное уравнение

решая которое, получаем ответ:

.

Этот пример из третьей группы интегралов. Здесь мы дважды применили интегрирование по частям.

Упражнения. №№ 000, 1214, 1226, 1221, 1217, 1218, 1225, 1223,

Семинар №5

Вычисление определённых интегралов

Вычисление определённых интегралов основано на свойствах определённого интеграла и формуле Ньютона-Лейбница.

Приведём основные свойства определённого интеграла

1) Каковы бы ни были числа a , b , c всегда имеет место равенство

https://pandia.ru/text/78/291/images/image185_0.gif" width="188" height="61 src=">.

3) Определённый интеграл от алгебраической суммы двух (конечного числа) функций равен алгебраической сумме их интегралов, т. е.

https://pandia.ru/text/78/291/images/image187_0.gif" width="47" height="27 src="> есть некоторая первообразная от непрерывной функции , то справедлива формула

.

Вычисление определённого интеграла как предела интегральных сумм – достаточно трудоёмкое дело даже для элементарных функций. Формула Ньютона-Лейбница позволяет свести вычисление определённого интеграла к нахождению неопределённого интеграла, когда известна первообразная подынтегральной функции. Значение определённого интеграла равно разности значений первообразной на верхнем и нижнем пределе интегрирования.

Примеры вычисления определённого интеграла в простейших случаях

https://pandia.ru/text/78/291/images/image191_0.gif" width="28" height="71 src=">.gif" width="387" height="61 src=">.gif" width="40" height="28 src=">.gif" width="41" height="21 src=">.gif" width="541" height="67 src=">

https://pandia.ru/text/78/291/images/image199.jpg" width="600" height="145 src=">

.

При использовании метода замены переменной в определённом интеграле надо иметь в виду два момента.

https://pandia.ru/text/78/291/images/image202.jpg" width="648" height="60 src=">

https://pandia.ru/text/78/291/images/image204.gif" width="319" height="61 src=">.gif" width="89" height="32 src=">.gif" width="525" height="28 src=">.

Интегрирование по частям в определённом интеграле

При использовании формулы интегрирования по частям в определённом интеграле иногда оказывается, например, что , поэтому сразу же следует вычислять выражение , не откладывая это до тех пор, пока не будет найдена вся первообразная.

https://pandia.ru/text/78/291/images/image213.gif" width="29" height="91 src=">.gif" width="221" height="53 src=">.gif" width="365" height="59 src=">.

Упражнения . №№ 000, 1522, 1525, 1531, 1583, 1600,1602.

Семинар № 6

Несобственные интегралы

Несобственные интегралы первого рода

Несобственные интегралы первого рода – это интегралы с бесконечными пределами (или одним бесконечным пределом). Это интегралы вида , , . Пусть функция интегрируема на любом конечном отрезке, заключённом внутри промежутка интегрирования. Тогда, по определению

https://pandia.ru/text/78/291/images/image222.gif" width="227 height=60" height="60">.gif" width="235 height=76" height="76">.

Если приведённые пределы существуют и конечны, то говорят, что несобственные интегралы сходятся. Если не существуют или бесконечны, то говорят, что расходятся (подробнее см. стр.72-76).

https://pandia.ru/text/78/291/images/image226.gif" width="47" height="21 src="> имеем

https://pandia.ru/text/78/291/images/image228.gif" width="31" height="71 src=">.gif" width="191" height="88 src=">

Если https://pandia.ru/text/78/291/images/image232.gif" width="188" height="60 src=">.gif" width="199" height="43 src=">.

Таким образом, данный интеграл сходится при и расходится при.

Исследовать на сходимость несобственный интеграл

https://pandia.ru/text/78/291/images/image239.gif" width="31" height="71 src=">=

https://pandia.ru/text/78/291/images/image241.gif" width="417" height="56 src=">,

Исследовать на сходимость несобственный интеграл

.

https://pandia.ru/text/78/291/images/image244.gif" width="303" height="61">.gif" width="523" height="59 src=">,

т. е. данный несобственный интеграл сходится.

Что еще почитать